k-Anonymity
نویسندگان
چکیده
To protect respondents’ identity when releasing microdata, data holders often remove or encrypt explicit identifiers, such as names and social security numbers. De-identifying data, however, provide no guarantee of anonymity. Released information often contains other data, such as race, birth date, sex, and ZIP code, that can be linked to publicly available information to re-identify respondents and to infer information that was not intended for release. One of the emerging concept in microdata protection is k-anonymity , which has been recently proposed as a property that captures the protection of a microdata table with respect to possible re-identification of the respondents to which the data refer. k-anonymity demands that every tuple in the microdata table released be indistinguishably related to no fewer than k respondents. One of the interesting aspect of k-anonymity is its association with protection techniques that preserve the truthfulness of the data. In this chapter we discuss the concept of k-anonymity, from its original proposal illustrating its enforcement via generalization and suppression. We then survey and discuss research results on k-anonymity in particular with respect to algorithms for its enforcement. We also discuss different ways in which generalization and suppressions can be applied to satisfy kanonymity and, based on them, introduce a taxonomy of k-anonymity solutions.
منابع مشابه
Improved Univariate Microaggregation for Integer Values
Privacy issues during data publishing is an increasing concern of involved entities. The problem is addressed in the field of statistical disclosure control with the aim of producing protected datasets that are also useful for interested end users such as government agencies and research communities. The problem of producing useful protected datasets is addressed in multiple computational priva...
متن کاملGenerating Microdata with P -Sensitive K -Anonymity Property
Existing privacy regulations together with large amounts of available data have created a huge interest in data privacy research. A main research direction is built around the k-anonymity property. Several shortcomings of the k-anonymity model have been fixed by new privacy models such as p-sensitive k-anonymity, l-diversity, (α, k)-anonymity, and t-closeness. In this paper we introduce the Enh...
متن کاملAnonymity: Formalisation of Privacy – k-anonymity
Microdata is the basis of statistical studies. If microdata is released, it can leak sensitive information about the participants, even if identifiers like name or social security number are removed. A proper anonymization for statistical microdata is essential. K-anonymity has been intensively discussed as a measure for anonymity in statistical data. Quasi identifiers are attributes that might...
متن کاملk-Concealment: An Alternative Model of k-Type Anonymity
We introduce a new model of k-type anonymity, called k-concealment, as an alternative to the well-known model of k-anonymity. This new model achieves similar privacy goals as kanonymity: While in k-anonymity one generalizes the table records so that each one of them becomes equal to at least k− 1 other records, when projected on the subset of quasi-identifiers, k-concealment proposes to general...
متن کاملMulti-dimensional k-anonymity Based on Mapping for Protecting Privacy
Data release has privacy disclosure risk if not taking any protection policy. Although attributes that clearly identify individuals, such as Name, Identity Number, are generally removed or decrypted, attackers can still link these databases with other released database on attributes (Quasi-identifiers) to re-identify individual’s private information. K-anonymity is a significant method for priv...
متن کاملMulti-dimensional K-anonymity based on Mapping for Protecting Privacy1
Data release has privacy disclosure risk if not taking any protection policy. Although attributes that clearly identify individuals, such as Name, Identity Number, are generally removed or decrypted, attackers can still link these databases with other released database on attributes (Quasi-identifiers) to re-identify individual’s private information. K-anonymity is a significant method for priv...
متن کامل